
Journal o f  Statistical Physics, Vol. 10, No. 5, 1974 

Irreversible Behavior of 
Interacting Systems. II. 
Fluctuations in Equilibrium 
George Mandeville 1 and Michael Coopersmith 1 

Received October 11, 1973 

The  m a t h e m a t i c a l  t echn iques  o f  the  prev ious  paper  are  used  to calculate  
the  f luc tua t ions  o f  the  order  p a r a m e t e r  for  large, finite K a c  r ing mode l s  
and  their  subsys t ems .  It  is s h o w n  tha t  the  f luc tua t ions  have  a character is t ic  
f r equency  even in the  t h e r m o d y n a m i c  limit.  This  indicates  tha t  a p repared  
s ta te  far  f r o m  equ i l ib r ium does  no t  behave  like a large f luc tuat ion.  A 
simplif ied vers ion  o f  the  Four ie r  s p e c t r u m  of  the  f luc tua t ions  is also 
presen ted  which  con ta ins  all t he  genera l  fea tures  o f  finite K a c  mode l s  and  
is m o r e  a m e n a b l e  to analysis .  

KEY W O R D S :  Nonequilibrium system; fluctuations; Fourier transform; 
time-space symmetry; Kac ring model; characteristic frequency. 

1. INTRODUCTION 

There is usually sufficient difficulty in determining the behavior of the ensemble 
averages in a nonequilibrium model that one does not attempt any direct 
calculation of the fluctuations from these averages. Fluctuations are not 
completely ignored, but are considered most often in a qualitative manner 
involving an order-of-magnitude calculation and some intuitive reasoning, m 
Usually, the order of  magnitude of the fluctuations will be the inverse square 
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root of the number of particles. In the thermodynamic limit the fluctuations 
are therefore small and, for most considerations, negligible. 

The qualitative behavior of fluctuations is important when one is con- 
sidering long periods of time. During sufficiently long observation periods 
the probability that a sizable fluctuation will occur is no longer negligible. 
The question then arises, "Will  the system return to equilibrium from a large 
fluctuation in the same way that it returns to equilibrium from a prepared 
state?" The usual answer to this is "yes"  with the additional statement, to 
eliminate the paradox of irreversibility, that any large deviation from equilib- 
rium is with overwhelming probability an extremum, allowing one to ignore 
any inference of a preferred time direction. 

The Kac model as an example of a very simple irreversible model 
contradicts this answer in some respects. The detailed analysis that follows 
indicates that the fluctuations are not random excursions from equilibrium, 
but demonstrate definite periodic behavior. This raises doubt that the return 
from a large deviation will appear identical to the return from a prepared state. 

There is a great deal of time-position symmetry in the Kac model. 
Figure 1 shows the complete history for one model, illustrating this sym- 

p 

Fig. 1. Position-time symmetry in the Kac model. 
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metry. In fact, if we perform the map 

~,(t) -+ f(p,  t + p) (1) 

we obtain a functionf(x, y) which is completely symmetric in x and y when 
%(0) = 1. That is, 

f(x,  y) = f(y ,  x) if f (x ,  x) = 1 (2) 

This symmetry between time and position leads one to expect correlations 
between characteristic lengths and characteristic periods. In the next section 
we find this to be the case. 

2. C H A R A C T E R I S T I C  F L U C T U A T I O N S  OF KAC M O D E L S  

The ensemble average of the order parameter is representative of 
particular Kac models in that it reflects the characteristic relaxation time and 
Poincar6 cycle. It is not representative, however, of the fluctuations of typical 
Kac models. The ensemble averaging cancels the fluctuations observed in 
particular systems and is of no value in studying the characteristic frequency 
distribution of Kac models. Exact solutions of particular models (Fig. 2) 
show that the frequency distribution is not uniform and appears to be related 
to scatterer density. The following is an analysis of that dependence. 

To simplify the discussion, we restrict the analysis to large Kac models 
with an even number of scatterers. A similar analysis can be done for odd 
numbers, but it does not further illuminate the subject. The deviation of the 
order parameter from its expected value can be expressed as 

r ( t ) -  <r(t))= ~ a~ cos(Zr&t/n) (3) 
h : = l  

where the Fourier transform a~ is given by 

a~ = (l/n) ~ [E(t) - (F(t))] cos(ZTrkt/n) (4) 
t = l  

Ideally, we would like to obtain (lakl), the characteristic magnitude of 
the Fourier components. Unfortunately, this quantity does not yield readily 
to calculation. A related quantity, ~a~2) 1/2, can be calculated, however, and 
represents a good estimate of the form, if not the magnitude, of (lak]). We 
write 

2rrkt 2~rkt' 
<a~ > = ~1 , ( r ( t ) r ( t ' )  - < r ( 0 ) < p ( r ) ) )  cos n c O S - - n  

= ~ ~ (P(t)F(t '))  cos 2~rk(tn- t') 

[E <v(0> cos (,, 
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Fig. 2. Typical order parameter behavior for finite systems. 

where use has been made of the evenness of  I '(t), i.e., 

r ( t )  sin(2z&t/n) = 0 (6) 

The crucial point in the calculation is the substitution of expressions for 
the ensemble averages in the right-hand side of  (5). A fruitful approach is to 



Irreversible Behavior of Interacting Systems. II 409 

note that  for n >> 1 and /z < �89 we can use the approximate  form in the 
preceding paper, 

( - 1 ) * a ( s )  ,,~ (1 - 2/z) ~ + (1 - 2/,) "-~ (7) 
8 

and write (5) as 

<ak ~> = ( l /n0 ~ (z ~ + z "-A) cos[4t - t')] 
tls'pp" 

_ [(//.2) ~ (z, + z"-9 cos(K0p (8) 
tp 

where K = 2~rk/n, z = 1 - 2/x, and A is the number  o f  e's occurring once in 

the chain %+1 "'" %+t%,+1 "'" Er +t,. 
With the aid o f  diagrams (Appendix A) these sums can be expressed as 

(a~ 2) = (1/n a (z t+t" + z '~-t-t ')  cos[K(t - t ' ])  
t q = t  t ' = l  

n = l  t - 1  n 2 q  
+ 2 ~ ~ (z2q+t '- '  + z '~-2q-t'+') cos[K(t - t ' ) l  

~=2 q= l f" = t - q +  l 

+ 2 ~ (z t - v  + z '~-t+v) cos[K(t - t ')]  - n 
t = l  q = O  ~'=i 

+ 
t = 2  q = l  t" = n - q +  l 

which after a laborious calculation gives 

(a~2) = ~  1 + z  2 2 z c o s s  + ~ (10) 

Figure 3 is a plot o f  (a~2> ~/2 for  various densities. The general form is 
that  o f  a low-pass filter with very small contributions for  all but  low fre- 
quencies. The cutoff  frequency can be approximated by calculating the point  
at which (ak2> 1/~ drops to one-half  its initial value. We obtain 

1/(1 - z) 2 = 2/(1 + z 2 - 2 z c o s  K) (I1) 

Fo r  dilute systems this is 

~: ~., 2m/n (12) 

The cutoff  period associated with this value o f  K is 

r =- n /k  = 2rr/K ~ rm/rn (13) 

which compares  favorably with the oscillatory behavior for  part icular Kac 
models, as seen in Fig. 2. 
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Fig. 3. Frequency distributions for Kac models of various densities. F = n(ak2) lt2. 

We have seen that the fluctuations of a Kac model are not representative 
of a random process, but exhibit periodic behavior. It is especially significant 
that this periodic behavior is strictly a function of the density of scatterers 
and is not a function of the size of the system. Therefore, density-dependent 
periodicity exists even in the thermodynamic limit and is a characteristic 
feature of a typical ensemble member as well as the ensemble average. 

3. C H A R A C T E R I S T I C  F L U C T U A T I O N S  OF S U B S Y S T E M S  

To complete the comparison of subsystem and whole system behavior, 
we repeat the calculation of Section 2 for F~(t). The calculation is somewhat 
more complicated because the chains of ~'s occurring in the calculation fall 
both inside and outside of the subsystem. We write, as before, 

{a~2~ = (1/n 2) ~ ~ (['~(t)I'~(t')~ cos[~( t -  t')] 
t = l  t ' = l  

-- [(1/n) t~=l(P~(t))cos(~t)]2 (14) 
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where the limits reflect the Poincar6 cycle n (m is assumed even). By analogy 
with (7), we can write 

<%+~ ... ~,+~p,+~ ..-~,+~,> z (z~ ~ + z > - ~ 9 ( z  ~ + z "-"~-A) (15) 

A = number of unpaired E's outside the subsystem (16a) 

As = number of unpaired e's inside the subsystem (16b) 

Using a diagram method (Appendix B) to reduce the summations to a 
manageable form, we obtain 

1 z t+t" cos[~(t <ak 2> = (n,n)2 2 7` - t')] 
p=I t=l p'=p+t t'=l 

ns--2 ~s--p+l p+t-i ns-P" 

+ 2 Z 7  ̀ Z Z z~ ~''-='+t'-t cos[~(t- t ' ) ]  
p=l t=O. ]~' =p+ I ~'=p+~--p'+ 1 

+ 2 7` Z Z Z ~,'+,'-,-,z:'-,cos~(,-,,)j 
p=I t=ns--P+l p'=p+I t'=p+t--p'+l 

n s - 1  n-i n s n - p ' + p  

+ 2 Z Z 7. Z z r  ~,+, , c o s l ~ ( , - , ' ) l  
p=l t=n-p+l p'=p+l t ' = p + t - p ' + l  

ns-i IIs-p' p+~-i p-p'+t 

+ 2 Z Z 7  ̀ Z z > , ' c o + ( , - t , ) j  
p = I  t = l  p ' = p  t ' = l  

r~s--1 rt ns--I l~s--P 

+ 2 Z Z Z Z z~ ,+,  c o + ( , - , , ) j  
p = l  t = n - p + l  p ' = p  t ' = l  

ns  n - p  n s t - p ' + p  

+ 2 Z Z Z Z z,+,-,-,~r-,co+(t-,')j-,~ 
p=l t = n s - - P +  l P" = p  t" = n s - - P "  + l 

n s - 1  n n s  p+~--p" 

+ 2 Z Z Z Z z ~ - t ' c o s { ~ ( t -  t ' ) ]  
p=l t=n--p+ l p" =p ~'=~%--p'+p+I 

+ 2 ~ ,  z~ "-t '-~ cos[K(t - t')l - nsn 
p = l  t = n - p + l  P ' = p + I  t ' = n - p ' + p + l  

..-, ]). 
- [t~= 1 zff cos(~ct) + ~ z2 -t cos(,ct) (17) 

t.n& ~,~--1 = t = n - p +  l 

After considerable calculation, this expression reduces to 

[ 1 - z '  l - z , '  ] 
( a 2 )  = 1 ( n - n s )  z2 + ns n~n----~ 1 + - 2z cos ,~ 1 + zs 2 2z, cos s 

1 - -  Zs 2 
(18) X 

1 + z s  2 - 2 z c o s , ~  

where 
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Fig. 4. Frequency distributions for Kac model subsystems of various densities. 
F = nll2n~t2(akZ)ll2;/z = 0.05. 

The case of greatest interest is the one in which/~ and /xs are significantly 
different. In this case ns << n because a subsystem which is a finite fraction of 
the whole system will not have a significant density difference. Figure 4 shows 
the form of this function for different densities. 

We have seen that the fluctuations of a subsystem are dependent equally 
on the scatterer density internal to the subsystem and the external scatterer 
density, when the subsystem is small compared with the whole system. Once 
again the form of the frequency distribution does not depend upon the size 
of the whole system, and the periodicity persists in the thermodynamic limit. 

4. A M O D E L  OF THE KAC M O D E L  

The foregoing analysis leads us to the following simplified picture (or, 
alternatively, a new one-dimensional model). The Fourier spectrum has been 
shown to have a magnitude which looks qualitatively like Fig. 3. This can be 
approximated by a rectangular distribution of [akl with a width equal to k0. 
From Eq. (13) this is approximately m/~r. The phases of the cosines are 
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randomly 0 or zr, that is, the coefficients of  the cosines are randomly plus or 
minus one with the constraint that the sum of the coefficients is zero. For- 
mally, we have 

/Co 

r ( t )  - ( r ( t ) 5  = ~ cos(kt + @~) (19) 
k = l  

where ek = 0 or rc and Z~ ~ 0 ~b~ = �89 
The expression given by Eq. (19) illustrates the low-pass filter aspect of  

the Fourier spectrum but, more importantly, allows for algebraic (rather 
than numerical) analysis. Thus we can demonstrate that the qualitative 
appearance of F(t) - (F( t ) ) ,  as shown in Fig. 2, f rom numerical calculations 
of  a specific arrangement of  scatterers is indicative of  most members of  the 
ensemble. To do this, we make use of  an expression developed by Kac (2) for 
the frequency of zeros of  a general function and adapted by Slater (3) to find 
the behavior of  a sum of  vibrations of  the form of Eq. (19). 2 

The expression with vchich Kac starts for the number of zeros in the 
interval (0, T) is 

G(T; r  -- rr-1 dx cos[xf(t)][f'(t)[ dt 

f? /o ;o = 2~ -2 dx y-~ dy cos[xf(t)]{1 - cos[yf'(t)]} dt (20) 

wheref ( t )  is a function with continuous derivative and finite number of  zeros 
in the interval (0, T) and we have used Slater's formula for [f '(t)[. (3) For  the 
phase-average frequency of zeros, L, in (0, T) we have 

' 2  2 L = ~ ... G(T; ~b 1,...) 
~z=o @~o=0 

fojo i ] 
1 ~o y - 2  r ko 

- ~r22Uo_lr dx dy ... ~ cos x ~ cos(~ct+ ~bk) 
V,'I = 0 VL, c = 0 L /(:=1 

x 1 - cos Ky sin(Kt + ~bu) dt 
k = l  

- ~r2T dx y -2  dy cos[x cos(~ct)] 

x 1 - I - I  cos[Ky sin(~t)l 

involving sin[x cos(Kt)] sin[Ky sin(Kt)]) dt (21) + terms 

2 We are indebted to Prof. S. A. Rice for calling this obscure work to our attention. 
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Fig. 5. Random sum of 26 cosines. 

where we have p u t f ( t )  = P(t) - (I?(t)). The last expression is obtained by 
expanding the cosines of  sums and performing the phase averages. The phase- 
average frequency of zeros is nearly equal to the frequency of zeros of  the 
function g(t)  = ~ o l  cos(Kt), that is, the sum of cosines with all positive 
coefficients, when the time T is taken to be the Poincar6 cycle time n. We do 
not have a rigorous proof  of  this last statement but we give a heuristic 
argument for it in Appendix C. In any case, the number of zeros of g(t)  in 
(0, n) agrees very well with the number of  zeros of P(t) - (P ( t ) )  in Fig. 2. 

To calculate this number, note that g(t)  can be written as 

1 sin[(2ko + 1)~rt/n] - sin(rrt/n) (22) 
g(t)  = 2 sin(rrt/n) 

The number of zeros of g(t)  in the interval (0, n) is clearly 2k0. For the case  
of  20 scatterers (m -- 20) 2k0 = 40/~r ~ 13, which (probably fortuitously !) is 
identical to the number of zeros of  the first graph (/~ = 0.1, n = 200) in Fig. 
2. A more detailed comparison with the Kac model shown in the last graph 
of Fig. 2 (/z = 0.2, n = 400) is made in Fig. 5. Here we have plotted f ( t )  
for a random arrangement of  plus and minus signs with ko = 26. Note that 
there are only 33 zeros in (0, n) as opposed to the estimated value of 52 from 
the corresponding g(t).  

5. C O N C L U D I N G  R E M A R K S  

While the results of the previous paper seem to be in accord with physical 
systems, it seems likely that the results in this paper concerning periodicity 
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may not  be a general feature of  such systems. This is probably  due to the 

nonergodici ty  of the Kac model.  More  precisely, the system development  of 

the Kac  model  does no t  cover all of  the available phase space. Thus, a large 

f luctuat ion is no t  equivalent  to a prepared state far from equi l ibr ium if the 

prepared state cannot  be reached from the initial  configuration. Whether  this 

is a specific property of  one-dimensional  models such as the Kac model is a 
p roblem whose answer clearly requires further investigation. 

A P P E N D I X  A. F L U C T U A T I O N  D I A G R A M S  
FOR THE KAC M O D E L  

The calculat ion of (8) is made simpler by considering the summa nd  in 
the first term as the product  of two chains of e's placed on a ring. We desire 

to perform the sum over all posi t ions and  lengths of the chains. The rota t ional  

symmetry of the ring allows us to carry out  t h e p  sum for all diagrams without  

complicat ion.  In t roduc ing  q -- p '  - p, we are left with a triple sum in the 

(a) 

Fig. 6. (a) Diagram A. Nonoverlapping chains. 1 ~< t ~< n -  1; t ~<q ~ n -  !; 
1 ~< t '  ~< n - q. (b) Diagram B. Singly overlapping chains. 2 ~< t ~< n - 1; 1 ~< q ~< 
t - 1; t - q + 1 ~< t '  ~< n - q. (c) Diagram C. One chain enveloping another chain. 
1 ~< t ~<n; 0 ~<q ~< t -  I; 1 ~< t" ~< t - q .  (d) Diagram D. Doubly overlapping 
chains. 2 ~< t ~< n; 1 ~<q ~< t -  1 ; n - q  + 1 ~< t'~< n. 
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variables t, q, and t ' .  Figure 6 shows four diagrams which represent the 
possible configurations of  these chains and express the associated conditions 
on the summation variables. 

Each diagram consists of  a fixed ring with an outer chain representing 
the positions ~1, e2 ..... Et and an inner chain representing the positions 
eq+l, eq+2,...,6q+t,. The summations are carried out for each diagram 
allowing t, q, and t '  to run over all values consistent with the diagram 
configuration. 

The diagrams allow us to express A in terms of the summation indices. 
Counting the number of  singly occurring e's yields 

A = t + t '  

A = 2 q + t ' - - t  

A = t - - t '  

A = 2 n - - t - - t '  

for diagram A 

for diagram B 

for diagram C 

for diagram D 

Diagrams B and C do not include all the cases of single overlap and 
envelopment. This can be seen by reversing the inner and outer chains. We 
can correct for this error by counting each of these diagrams twice (for the 
two possible orientations) and subtracting the overcount which occurs for 
q = 0, t = t '  in diagram C. The overcount can be expressed as 

(z t-t" + z '~-t+t') cos[~(t - t ')] = n, t = t '  (A.1) 
t = l  

where use has been made of the asymptotic form 

z" << 1 for large n (A.2) 

Equation (9) follows immediately from the diagrams. The calculation is 
best carried out by substituting 

cos[K(t - t ')] = Re[e~"-t ')  l (A.3) 

and performing sums on quantities of the form x t, where x is a complex 
number. 

The exponential form of the summand implies that the significant 
contribution will occur at A ~ 0 and A ,,~ n, which correspond to almost no 
singly occurring e's and almost all singly occurring e's, respectively. In addi- 
tion, these extremes must be associated with a free sum of at least one 
variable to contribute to the sum. By this reasoning one can discard the second 
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terms in A and B by inspection. This consideration plays a larger role in 
Appendix B. 

A P P E N D I X  B, F L U C T U A T I O N  D I A G R A M S  FOR 
A KAC M O D E L  S U B S Y S T E M  

A method similar to that described in Appendix A can be applied to the 
Kac model subsystems, An additional complication arises from the asym- 
metry of two distinct regions on the ring diagrams. Each chain of E's must 
terminate in the region associated with the subsystem, but the other ends of  
the chains can be in either of the regions. The diagram method of Appendix A 
is modified by introducing two radial lines to denote the subsystem region. 
The diagrams (Fig. 7) represent all configurations of chains terminating in 
the subsystem region. An additional subdivision of  the Appendix A con- 
figurations is necessary to account for all the distinct configurations in the 
case of subsystems. 

The only diagrams that contribute to the highest order of  the calculation 
are those in which the empty (A ~ 0) and the full (A ~ n) limits have two 
degrees of freedom. This is necessary for the diagrams to generate a term of  
order n ~. The diagrams for which As ,-~ 0 include A1, B~, B4, Be, C1, C4, C6, 
and D3. The diagrams for which A s ,,~ n~ include B~ and C4. There are no 
contributing diagrams for which A ~ n -- n~. 

All the diagrams are doubly degenerate because distinct diagrams are 
obtained when the inner and outer chains are interchanged. Again an over- 
count results in C~, C~, and C6 diagrams, but this is easily subtracted out 
of  the sum. 

The Aa, B3, and D1 diagrams do not contribute to order n 2 and are 
consequently left out of  (17). The remaining diagrams are expressed in their 
summation form in (17) in the order given here. Diagrams A~, B,,  C1, C3, 
C6, and D3 give the term that corresponds to the whole system, and diagrams 
B4 and C4 yield the new term. 

A P P E N D I X  C, F R E Q U E N C Y  OF Z E R O S  OF f(t) 

We wish to demonstrate that the phase-average frequency of zeros 
f( t)  = ~ o  1 cos(Kt + ~bk) is given to a good approximation by the frequency 
of zeros of g(t) = ~o__1 cos(Kt), K = 2~rk/n. The argument is based on the 
apparent smallness of certain integrals, although we have no general estimate 
for their size. In view of the fact that we have no general proof, we will com- 
pare the expressions for the frequency of zeros o f f ( t )  and g(t) for k0 = 4. 
Even in this simple case, we can only make a heuristic argument for the size 
of the terms involved. 
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( 

Fig. 7. (a) D i a g r a m  Az. 1 ~<p ~< n s -  2; 1 ~< t ~< n, - p -  1 ; p  + t ~<p '  ~< n ~ -  t ;  
1 <<. t '  <~ ns - p ' ;  As = t + t ' ;  A = O. (b) D i a g r a m  A2. 1 ~< p ~< n~ - 1; 1 ~< t ~< 
n , - - p ; p +  t < p ' ~ < n ~ ;  n s - - p ' +  1 ~ t '  < ~ n - - p ' ; A ~ =  t + n , ~ - p ' ; A  = p  + t - n s .  
(c) D i a g r a m  As.  1 ~<p-<< n , -  1; 1 ~< t ~< n ~ - p ;  p + t ~<p'  ~< n~; n - p ' +  1~< 
t" ~< n - p '  + p ; A s  = t + t '  - n + n~;A = n -  n~.(d)  D i a g r a m B ~ . l  ~<p ~< n , -  3; 
2 <<.t < ~ n s - - p +  1; p +  t<~p" < ~ p +  t - -  1 ; p +  t - - p "  + 1 <~t' < n ~ - p ' ;  A s =  
2 p ' - 2 p  + t ' -  t ; A =  0 . ( e )  D i a g r a m B 2 . 1  ~<p ~< n ~ -  2 ; 2 ~ <  t-<< n ~ - p ; p  + 1 ~< 
p" <<.p + t - l ;  n ~ - p '  + 1 <. t '  < < . n - p ' ;  A~ = n~ + p ' -  2p - t; A = p "  + t ' - n ~ .  
(f) D i a g r a m B 3 .  1 ~<p ~ < n ~ -  2 ; 2  <-% t ~< n , - p ; p  + 1 ~<p'  < p  + t -  1 ; n - p ' +  
1 ~< t '  < n - p '  + p ; A ~  --- n~ + 2p '  - 2p - t + t '  - n ; A  -- n - n~. (g) D i a g r a m  B~. 
1 < ~ p < . n , -  1; n ~ - p ' +  1 < ~ t < ~ n - p -  l ; p +  1 <~p'<~n,; p +  t - p ' +  1<~ 
t '  ~< n - p ' ;  A ~ =  p ' - p ;  A = p  + t '  - p  - t. (h) D i a g r a m  B~. 1 < p  ~< n~ - 1; 
n , - p +  1 < . t < . n - p ;  p +  1 < .p '< .n~;  n - p ' +  l < ~ t ' < ~ n - p ' + p ;  A , =  
2p '  + t ' - p -  n;  A = n - p -  t. (i) D i a g r a m  B~. 1 ~<p <~ n~ - 1; n - p  + 1 
t < n -  1; p +  l <~p" <.n~; p + t - p '  + 1 <~t' < ~ n - p "  + p ;  A ~ = 2 p ' - 2 p +  
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Fig. 7. C o n t i n u e d .  

t ' - -  t ; A  = 0 . ( j )  D i a g r a m C l .  1 ~<p ~< n ~ - -  1 ; l  <~ t <~ n ~ - p ; p  <.p" <<.p + t -  1; 
1 ~< t ' ~ < p - - p ' +  t ; A s  = t - -  t ' ; A  = 0 . ( k )  D i a g r a m C 2 .  1 <~p <<.n~- 1 ; n ~ - p +  
1 <~ t < n - p ; p < . p ' < ~ n ~ - - l ;  1 ~< t '  ~< n , - - p ' ; A s  = n ~ - -  t ' - - p ; A  = p  + t - - n , .  
(1) D i a g r a m  C3. 1 ~<p ~< n s - -  1; n - p  + 1 ~ t ~< n; p ~<p '  ~< n s -  1; 1 ~< t '~<  
n ~ - - p ' ; A s  = ns -- n + t - -  t ' ; A  = n -- ns. (m) D i a g r a m  C4. 1 <~p < ns; ns - p +  
1 < ~ t < n - p ; p < ~ p ' < ~ n ~ ;  n s - p ' < ~ t '  < ~ t - p ' + p ;  A ~ = p ' - - p ; A = p + t - -  
p '  -- t ' .  (n) D i a g r a m  C5. 1 <. p <~ n~; n - p + 1 <~ t <. n; p < p" <. ns; n~ -- p '  + 1 <~ 
t '  ~< n - - p ' ; A , =  p '  + t - -  n ; A  = n - - p ' - -  t . ( o )  D i a g r a m C 6 .  1 ~<p ~< n , ; n - - p +  
1 < . t < n ;  p < < . p ' < ~ n , ;  n - - p ' +  l < ~ t ' < ~ p + t - - p ' ;  A , = t - - t ' ;  A----0.  (p) 
D i a g r a m  D1. 1 ~<p < n ~ - -  2; 2 < t ~< n~ - p ;  p + 1 < p ' < p  + t -  1; n - p ' +  
p + 1 ~< t '  ~ n ; A ,  = n~ -- t -- t '  + n ; A  = n - n , .  (q) D i a g r a m  D2. I ~<p < n ~ -  1; 
n ~ - p  + 1 ~ t < n - p ; p +  1 <~p' < n , ; n - p '  + p  + 1 <~ t" <~ n;A~ = n - -  t ' + p ;  
A = n - - p - -  t . ( r )  D i a g r a m D 3 . 1  ~ < p ~ < n s -  1 ; n - - p  + 1 ~ t <~ n ; p  + 1 < ~ p ' <  n,; 
n - - p ' + p  + ' 1  < t '  < n ; A ,  = 2 n - -  t ' - -  t ; A  = 0 .  
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The integral occurring in the phase-average frequency of zeros o f f ( t )  
for ko = 4 [the last expression of Eq. (21)] is 

4 

fo dX fo~Y-2dY f~ {~=qc~176 - ~= cos('~ysin~t)] 
4 

- ~ sin(x cos ~t) sin(x cos At) cos(x cos/zt) cos(x cos vt) 
k<l=l 
tc , l#m,p  

x sin(Ky sin Kt) sin(~,y sin At) cos(/zy sin/~t) cos(vy sin vt) 

- ~ sin(x cos Kt)sin(Ky sin ~:t)~. dt (C.1) 
/ c = l  ) 

where, for simplicity, we have ignored the restriction on the r T is the 
period of f ( t) ,  ,~ = 2~l/n, i~ = 2~rm/n, and v = 2rrp/n. If  we compare the 
sizes of the contributions to the integral by the various terms in the integrand, 
it appears that the first term is the dominant one. The reason is that the major 
contribution to the integral is from small x (< #/2) when the t integral is 
performed over a period in t. Therefore any term containing sin(x cos Kt) as 
opposed to cos(x cos Kt) will be stnall because it will be of order x (rather 
than unity) for small values of x. 

There is, however, a term in the integral for the frequency of zeros of 
g(t), a which is of the form 

fir( dx y-2 dy cos(x cos Kt) sin(Ky sin Kt) dt (C.2) 
k = l  

This term appears to be as large as the leading term of Eq. (C.1) because its 
major contribution comes from small x. Nevertheless, it is also small because 
it oscillates for small y and all x. Thus the expressions for the frequency of 
zeros o f f ( t )  and g(t) appear to have the same dominant term, Of course, a 
rigorous estimate of the relative size of the other terms would be desirable, 
but we must be content at present with the reasonable agreement with the 
computer "experiments" of Fig. 2. 
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a We have not  written the full sum because of its sheer size. The reader can easily discern 
the types of terms involved. 


